

The Society for engineering in agricultural, food, and biological systems

Paper Number: 022203 An ASAE Meeting Presentation

Drip Irrigation and Fertigation for Sugarcane in Deep Black Soils

Please have Word's AutoFormat features turned OFF.

V.G.Vaishnava Department of Agril. Engineering Marathwada Agricultural University, Parbhani - 431 402 (India) E-mail : nmt@mkv2.mha.nic.in L.N.Digrase Agricultural Engineer Water Management Research Centre Marathwada Agricultural University, Parbhani – 431 402 (India) D.K.Shelke Chief Scientist Water Management Research Centre Marathwada Agricultural University, Parbhani – 431 402 (India) P.R.Bharambe Soil Physicist Water Management Research Centre Marathwada Agricultural University, Parbhani – 431 402 (India)

The authors are solely responsible for the content of this technical presentation. The technical presentation does not necessarily reflect the official position of the American Society of Agricultural Engineers (ASAE), and its printing and distribution does not constitute an endorsement of views which may be expressed. Technical presentations are not subject to the formal peer review process by ASAE editorial committees; therefore, they are not to be presented as refereed publications. Citation of this work should state that it is from an ASAE meeting paper. EXAMPLE: Author's Last Name, Initials. 2002. Title of Presentation. ASAE Meeting Paper No. 02xxxx. St. Joseph, Mich.: ASAE. For information about securing permission to reprint or reproduce a technical presentation, please contact ASAE at hq@asae.org or 616-429-0300 (2950 Niles Road, St. Joseph, MI 49085-9659 USA).

Written for presentation at the 2002 ASAE Annual International Meeting / CIGR XVth World Congress Sponsored by ASAE and CIGR Hyatt Regency Chicago Chicago, Illinois, USA July 28-July 31, 2002

Mention any other presentations of this paper here, or delete this line.

Abstract. An experiment was conducted at Water Management Research Centre, Parbhani on Sugarcane Variety CO-7714, during 2000-2001 on medium deep clayey soil for finding out optimum water requirement, water use efficiency under drip and fertilizer use efficiency. The treatments consisted of three irrigation schedules through drip I₁ (0.6, 0.8, 1.0 and 0.8 ETc) I₂ (0.8, 1.0, 1.2 and 0.6 ETc) and I₃ (1.0, 1.2, 0.6 and 0.8 ETc) compared with surface irrigation at 1 IW/CPE with 70 mm depth and recommended dose of fertilizer (Soil application) as control, with three fertigation treatments

- i) F₁ soil application 100 per cent
- ii) F₂ 100 per cent recommend dose through drip
- iii) F₃ 80 per cent recommend dose through drip
- iv) F_4 60 per cent recommended dose of fertilizer through drip.

As regards irrigation treatments scheduling of irrigation as per I₂ treatment recorded highest cane yield (179.96 t/ha) the other two irrigation treatments I₁ (165.86 t/ha) and I₃ (165.57 t/ha) were at par. The saving in irrigation water under I₁, I₂, I₃ schedule was 29.57, 20.72 and 21.40 per cent. Application of 80 per cent (7 splits) recommended dose of fertilizer through drip gave highest sugarcane yield (182.84 t/ha) and found significantly superior over rest of treatments. Interaction effect fertilizer X irrigation was found significant. The irrigation schedule I₁ coupled with 80 per cent recommended dose gave significantly higher cane yield of 199.48 t/ha. The fertilizer level F₄ (60 per cent) recommended dose of fertilizer through drip recorded highest fertilizer use efficiency of 57.56 X 10⁻² tons/kg of NPK. Fertilizer use efficiency was lowest in control treatment as compared to rest of all.

Keywords. ETC (Pan evaporation X KC), Fertigation, Irrigation Efficiency, Fertilizer use efficiency

The authors are solely responsible for the content of this technical presentation. The technical presentation does not necessarily reflect the official position of the American Society of Agricultural Engineers (ASAE), and its printing and distribution does not constitute an endorsement of views which may be expressed. Technical presentations are not subject to the formal peer review process by ASAE editorial committees; therefore, they are not to be presented as refereed publications. Citation of this work should state that it is from an ASAE meeting paper. EXAMPLE: Author's Last Name, Initials. 2002. Title of Presentation. ASAE Meeting Paper No. 02xxxx. St. Joseph, Mich.: ASAE. For information about securing permission to reprint or reproduce a technical presentation, please contact ASAE at hq@asae.org or 616-429-0300 (2950 Niles Road, St. Joseph, MI 49085-9659 USA).

Introduction

Sugarcane is an important cash crop of India. In Maharashtra State sugarcane crop is grown on 5.162 Lac hectares yielding 418.05 Lac tonnes. Farmers use 300 to 400 ha. cm of water to grow sugarcane crop. But according to scientific findings the water requirement of sugarcane crop varies from 120 to 300 cm in different parts of country.

Scientific water management aims at maintaining the soil moisture in the root zone at optimum level. Drip irrigation for sugarcane is in practice in many countries of the world. 14 per cent or more yield was observed under drip irrigated sugarcane than furrow method of irrigation.

Drip irrigation with fertigation results in higher water and fertilizer use efficiencies Irrigation at fixed IW/CPE through the growth period does not fully meet the crop water requirement during grand growth stage, and therefore present studies were undertaken with a view to study the crop response, water saving, fertilizer use efficiency, water use efficiency during 2000-2001 in medium deep black cotton soils.

Safety Emphasis

You are urged to discuss the effects of your research, concept, design, technique, material, etc., on personal safety, if applicable. In what ways did you consider safety in your project? How will your work improve safety? What precautions do you plan or recommend to eliminate the adverse effects?

Material and Methods

An experiment was conducted at water Management Research Centre, Marathwada Agricultural University, Parbhani (India) during 2000-2001. The soil was medium deep clayey in texture and Alkaline in reaction. It was low in organic carbon and Nitrogen, medium in phosphorus and rich in potassium. The moisture content at 0.33 and 15 bars were 34.5 and 15.5 per cent respectively. The bulk density of soil was 1.32 g/cm³ EC 0.3 dsm⁻¹.

Sugarcane variety CO-7714 was planted on 6^{th} February 2000, with paired planting (70 + 140 cm), seed rate used was 25000 sets/ha. Randomized block design was adopted, with three replications and plot size was 8.4 x 10.0 m. Three irrigation schedules for drip irrigation were followed. Pan evaporation values (monthwise) of the region and crop coefficient values were taken into consideration and values of ETc (pan evaporation x crop coefficient) were worked out. The details are given below.

Crop stage in Schedule (growth period days) I_1 2 I₃ **Common Irrigation** 0 - 4041 - 900.8 ETc 0.6 Etc 1.0 ETc 91 – 160 0.8 Etc 1.0 ETc 1.2 ETc 161 – 250 1.0 Etc 1.2 ETc 0.6 ETc 251 – 350 0.8 Etc 0.6 ETc 0.8 ETc

The drip irrigation treatment was compared with surface irrigation at 1 IW/CPE with 70 mm depth and recommended dose of fertilizers through soil application (Convential method of irrigation and fertilizer application)

Fertilizer treatments

The details are as below

The details of irrigation schedules.

- 1. $F_1 100$ per cent recommended dose of fertilizer (RDF) i.e. 250 kg N + 115 kg P_2O_5 + 115 K 20/ha through soil application (4 splits) and irrigation through drip.
- 2. F₂ 100 per cent RDF through drip
- 3. $F_3 80$ per cent RDF through drip
- 4. $F_4 60$ per cent RDF through drip

Details of fertilizer splits through drip were as follows :

Percentage of RDF	Application (Day's after planting)		
10	At planting		
20	30		
10	60		
20	90		
10	120		
20	150		
10	180		

Fertilizer splits for soil application were

- 1. 10 per cent at planting
- 2. 40 per cent 60 days after planting
- 3. 10 per cent 90 days after planting
- 4. 40 per cent at earthing up.

For mulation of fertilizer were

- i) Urea
- ii) 18 : 18 : 10 (kg/N, P & K)
- iii) Phosphoric acid
- iv) Murate of potash

Drip layout

Drip layout was done as per the specific norms of the system. One lateral line was provided for a pair of two rows. On line emitter of 4 LPH capacity were fixed at every 60 cm on lateral the experimental plots were separated by independent manifolds with control values.

		* I ₁		l ₂	I ₃	Mean
**	F ₁	136.8	36	193.68	180.5	9 170.48
	F_2	167.7	72	179.42	157.8	0 186.507
	F ₃	199.4	48	183.37	165.6	7 182.84
	F ₄	159.0	28	167.58	170.6	3 165.76
N	/lean	165.6	66	179.96	168.5	7 171.40
C	Control	86.89 -		-	-	164.84
*	I ₁ , I ₂ , I ₃	_	Irrigati	on levels		
**	F ₁ , F ₂ ,	F ₃ , F ₄ –	Fertiliz	zer levels		

Water applied for various treatments in mm is given in table – 4 Table – 1 : Cane yield of sugarcane as influenced by different treatments

Form table – 4, it can be observed that there was 29.57 per cent, 20.72 per cent and 21.40 per cent water saving in irrigation treatments I_1 , I_2 and I_3 over control.

The data on millable cane yield as influenced by different treatment is given in Table -2.

Table – 2: Cane yields (t/ha) as influenced by different treatments

Fertilizer schedule	Fertilizer use (NPK)	Cane yield (t/ha)	Fertilizer use efficiency t/kg NPK 10 ⁻²
F ₁	480	170.48	35.52
F ₂	480	166.507	34.69
F ₃	384	182.84	47.61
F ₄	288	165.76	57.56
Control 100%	480	164.84	34.34
RDF through Soil			

A) Irrigation Schedule

The data from table – 1 indicates that scheduling of irrigation as per I_2 (0.8, 1.0, 1.2 and 0.6 ETc) treatment recorded highest cane yield (179.96 t/ha) and proved significantly superior over I_1 (0.6, 0.8, 1.0, 0.8 ETc) yielding 165.66 t/ha. The treatment I_1 and I_3 were at par.

B) Fertilizer effect

Application of 80 per cent (7 splits) recommended dose of fertilizer through drip (F₃) gave highest cane yield (182.84 t/ha) and found significantly superior over rest of the treatments F₁ i.e. (100 per cent recommended dose, soil application) 170.48 t/ha F₂ (100 per cent dose through drip) 186.507 t/ha and F₄ (60 per cent recommended dose through drip) recording 165.76 t/ha. (Table – 2)

C) Interaction effects

The scheduling of irrigation as per I_1 coupled with fertilizer application at the rate of 80 per cent recommended dose of fertilizer through drip (F₃) gave significantly highest cane yield of 199.48 t/ha than rest of treatment combinations except I_2F_1 (Table – 1)

Fertilizer use efficiency

The highest fertilizer use efficiency of 57.56 t/kg NPK 10^{-2} was observed in F₄ treatment (60 per cent RDF through drip) i.e. 47.61 t/kg NPK 10^{-2} it was lowest in control i.e. 34.34 t/kg NPK 10^{-2} . (Table – 2)

Water use efficiency

Water use efficiency was highest in I_1 i.e. 9.428 t/ha mm (10⁻²) and was lowest in control treatment i.e. 3.523 t/ha mm (10⁻²). (Table – 3)

Irrigation schedule	Irrigation water Applied (mm)	Cane yield t/ha	Water use efficiency t/ha mm (10 ⁻²)
Drip system	1757.04	165.66	9.428
1 1			
1 ₂	1955.09	179.96	9.205
1 ₃	1938.50	168.57	8.696
Gravity flow at	2466.17	86.89	3.523
1/W/CPE			

Table 3	:	Effect of water earlier	xpense com	nponents in	Sugarcane
---------	---	-------------------------	------------	-------------	-----------

Sr.	Growth period		P.E.	ETc	I ₁	I ₂	l ₃	Control
No.		1						
1	0 -	Feb-26	6.6	2.886	75.036	75.036	75.036	171.60
	40 – days	Mar-14	8.58	2.896	40.544	40.544	40.544	120.12
2.	41 -	Mar-17	8.58	2.896	29.546	39.389	49.232	145.86
	90	Apr-30	11.58	10.133	182.370	243.180	303.990	347.40
	days	May-3	15.78	13.808	24.855	33.138	41.424	47.34
3.	91 -	May-28	17.78	13.808	309.288	386.624	463.932	441.84
	160	Jun-30	6.62	5.793	139.02	173.790	208.560	198.60
	days	Jul-12	5.00	5.688	54.600	68.256	81.912	60.00
4.	161	Jul-19	5.00	5.688	108.072	129.349	92.659	135.78
	250	Aug-31	4.38	4.983	154.473	185.349	92.659	135.78
	days	Sept-30	5.50	6.257	187.710	225.240	112.620	165.00
		Oct-10	6.10	6.939	69.39	83.260	41.630	61.00
5.	251	Oct-21	6.10	6.939	116.571	87.423	116.571	128.10
	350	Nov-30	4.80	5.460	131.040	98.280	131.040	144.00
	days	Dec-31	4.10	2.870	71.176	53.382	71.176	127.10
		Jan-18	4.30	3.010	43.344	32.508	43.344	77.40
	Total water requirement mm				1737.035	1955.093	1938.498	2466.14
	Water saving over control				29.57 %	20.72 %	21.40 %	

 Table
 4 :
 Water application for Sugarcane (mm)

Treatment	Soil depth (cm)	Lateral	Lateral distance (cm) from dripper				
		0	20	40			
L ₁	0-15	0.66	0.78	0.87			
	15-30	0.88	0.90	0.73			
	30-45	0.88	0.90	0.86			
	Average I ₁	0.81	0.86	0.82			
l ₂	0-15	0.66	0.86	0.87			
	15-30	0.82	0.91	0.83			
	30-45	0.90	0.86	0.80			
	Average I ₂	0.79	0.87	0.83			
l ₃	0-15	0.76	0.93	0.78			
	15-30	0.80	0.82	0.74			
	30-45	0.85	0.85	0.82			
	Average I ₃	0.80	0.86	0.78			
Control	0-15	0.55	0.75				
	15-30	0.75	0.90				
	30-45	0.75	1.00				
	Average Control	0.68	0.88				

Table - 5: Salt distribution (dsm⁻¹) under point source of application of drip irrigation.

Salt distribution

The data from table 5 indicates that in general salt concentration was comparatively low at point source and slightly increased upto 20 cm laterally. It was low in surface layer and increased with depth under all irrigation schedules.

■ F1 ■ F2 ■ F3 ■ F4 ■ Control

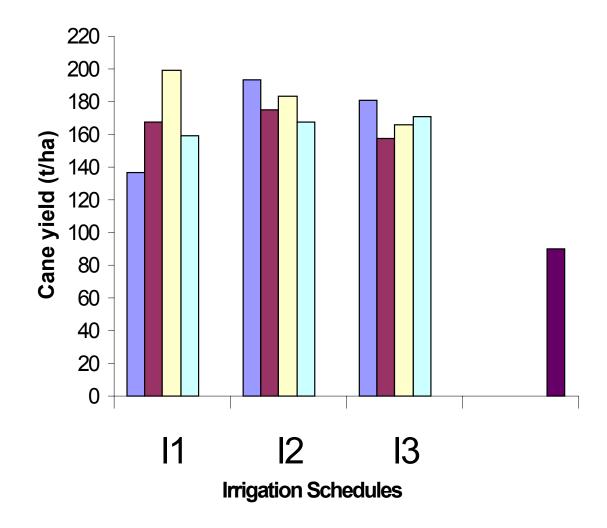


Figure 1. Cane Yield (t/ha) of sugarcane as influenced by different irrigation and fertilizer treatements.

Conclusion

The experiment on drip irrigation for sugarcane in medium black deep cotton soils was carried out during the year 2000-2001. It was observed that there was 29.57 per cent, 20.72 per cent and 21.40 per cent water saving in different drip treatments. (I_1 , I_2 , I_3) compared with control i.e. surface irrigation (a) 1 IWICPE ratio. Scheduling of irrigation as per I_2 treatment (0.8, 1.0, 1.2 and 0.6 ETc) recorded highest cane yield i.e. 179.98 t/ha and was significantly superior over I_1 and I_3 . Treatments I_1 and I_3 were at par. Application of 80 per cent recommended fertilizer dose in 7 splits through drip gave highest cane yield (182.84 t/ha) and was significantly superior over rest of the treatments. Scheduling of irrigation as per I_1 with fertilizer application @ 80 per cent

recommended dose gave significantly highest cane yield of 199.48 t/ha. The highest water use efficiency of 9.428 t/ha mm (10₋₂) was observed in irrigation treatment I_1 , and was lowest in control treatment i.e. 3.523 t/ha mm (10₋₂).

In nut shell considerable saving in fertilizer and irrigation water was observed in the experiment.

Acknowledgements

Acknowledgements, if any, are placed here under a Heading 2.

References

- Bangar, A.R. and A.V. Patil (1998) Efficacy of fertigation through drip on water use nutrient distribution in soil and uptake and yield of okra in medium verisols. National Seminar on Water Management for sustainable agriculture problems and perspectives, New Delhi April 15-17, 1998. P-39.
- Chakraborty, B., A.K. Shigh, K.S. Uppal and Ashwini Kumar (1998). Nitrogen distribution in soil as affected by micro irrigation. National seminar on waters Management for sustainable agriculture problems and perspectives, New Delhi April 15-17, 1998. P-38.
- Jadhav, S.D., A.S. Deshmukh and B.S. Banger (1993). Fertigation under surface and subsurface drip irrigation for sugarcane irrigation and water management for sugarcane VSI Pune June 94, 1-8.
- Kadam, J.R. and S.S. Kale (1998) Effect of urea N fertilizer through drip irrigation on brinjal National seminar on water management for sustainable agriculture problems and perspective Agril. 15-17, 1998 P-37.
- Raskar, B.S., M.C. Bankar and P.G. Bhoj (1998). Planting techniques and Nitrogen Management in sugarcane under drip irrigation National seminar on water management for sustainable agriculture problems and perspective New Delhi April 15-17, P-36.
- Shigandupe, R.B. and R.K. Batta (1998). Irrigation scheduling concepts in sugar cane; A comparative evaluation National seminar on water management for sustainable Agril problems and per respective New Delhi April 15-17, P-20.

Appendix or Nomenclature

This optional section can include lists of nomenclature or abbreviations, reference data, or tables that are too long to include in the body of the article.