The Benefits of Nutrigation[™]

Contents

- About Nutrigaton
- The benefits of Nutrigation
- Nutrigation programs
 - Water management
 - Methods of Nutrigation
 - Preparation of nutrient solutions
 - Soil conditions
 - Example: Nutrigation in processing tomatoes
- Haifa products for Nutrigation

Nutrigation = Nutrition + Irrigation

Nutrigation

Water and plant nutrients are delivered simultaneously through the irrigation system, in precise combination and timing.

Basic assumptions

- Nutrients availability follows plant's requirements
- Nutrient uptake rates are crop-specific
- No nutrient can replace another one
- Nutrients should be available to the plants "Just- on -Time".
- Any deficiency or delay in nutrient availability will result in a reduction in yield and/or quality.

The sources of inorganic nutrients are soil and water

Examples of yield-limiting minimum factors presented as "minimum barrel"

minimum factors

The yield potential of a crop is like a barrel with staves of unequal length. The capacity of the barrel is limited by the length of the shortest stave (in this case, potassium), and can only be increased by lengthening that stave. When that stave is lengthened, another one becomes the limiting factor.

Pioneering the Future Haifa

Annual uptake of nutrients

These rates & ratios must be followed for a reasonable rose yield:

Nutrient uptake carve - Tomatoes

Source: Huett, 1985

Pioneering the Future Haifa

Dynamics of nutrient uptake

Of course, the plant can't handle it's entire annual water portion applied at once.

Dynamics of nutrient uptake

Fe

Κ

Na

Mg

Zn

Pioneering the Future Haifa

Cu

Β

CI

Mn

Со

S

Same holds true for nutrients, too. Nutrients should be applied according to their requirement pace.

Advantages for the plant:

- Nutrients are directed to the active root zone
- Uniform distribution of nutrients
- Nutrients are already dissolved, hence ready for uptake by the roots
- Plant enjoys continuous nutrition. No temporary deficiency may occur

Advantages for the system:

- Reduced losses of nutrients by leaching
- Soil and groundwater contamination is minimized
- Less soil compaction, hence better root performance
- Saving on machine / manual spreading
- Reduced weed population, hence less herbicide costs
- Higher application flexibility (time, weather, soil)

Detailed case studies of yield benefits achieved by Nutrigation

<u>Crop</u>: Lily bulbs <u>Experiment location</u>: Holland, Lisse, LBO trial Station, 1996 <u>Control treatment</u>: Soil applied NPK's <u>Nutrigation treatment</u>: 17-8-26+2MgO

Application method	Share of bulb sizes >16 (%)	Botrytis infected (%)	Total profit (\$ / ha)	
Soil	35.6	6.3	116,785	
Nutrigation	62.0	2.0	137,900	

Detailed case studies of yield benefits achieved by Nutrigation

<u>Crop</u>: "ruby- red" grapefruits <u>Experiment location</u>: U.S., Florida, 1995 <u>Control treatment</u>: Soil applied Multi-K <u>Nutrigation treatment</u>: Multi-K

Application method	Total yield (boxes/tree)	Fruit size 40 (boxes/ ha)	Gross packed value (\$ / ha)
Soil	7.9	1060	16,500
Nutrigation	8.8	1446	19,500

Source: Boman, 1995

Detailed case studies of yield benefits achieved by Nutrigation

Crop: Open- field tomatoes Experiment location: India, Andrha Pradesh, 1997 Control treatment: Soil applied MOP Nutrigation treatment: Multi-K, equal K rate

Application method	Total yield (MT / ha)	Net benefit over control (\$ / ha)		
Side- dressed with MOP	21.0			
Nutrigated with Multi-K	26.2	215		

Nutrigation program

Nutrigation program should consider:

- Water management
- Nutrient requirements
- Soil conditions

Good Nutrigation program is based on proper water management, considering:

- Plant water requirements
- Soil type
- Irrigation equipment

Plant water requirements are proportional to the rate of evapotranspiration (ETP) which depends on

- Plant type
- Stage of plant development
- Meteorological conditions (temp., wind, radiation, humidity)

Total amount of water required = cumulative ETP Example: monthly and cumulative ETP of cotton

Soil type affects the direction and speed of water movement.

Choice of irrigation equipment depends on

- Cost consideration
- Soil type → infiltration rate and pattern
- Topography
- Available water pressure
- Density of planting and root system

Type of irrigation equipment determines daily irrigation portions and time intervals between irrigations.

Examples of irrigation cycles during June in Israel coastal area:

	m ³ /ha/day	Time intervals between irrigations					
Сгор		sprinkler	Miene ist	Drippers			
			where jet	Heavy soil	Sandy soil		
Citrus	35	35	12	6	5		
Avocado	38	8	5	4	2		

...and now we have to introduce nutrients into the irrigation water...

Nutrigation Types/Methods

Quantitative Nutrigation

The fertilizer is applied in one pulse during a part of the irrigation time.

Proportional Nutrigation

The fertilizer concentration in the irrigation water is kept constant.

Nutrigation Types/Methods

Fertilizer concentration in the irrigation water

Quantitative Nutrigation

Proportional Nutrigation

Quantitative_Nutrigation

Used in orchards and in heavy soils.

- The grower determines the total amount of fertilizer.
- The fertilizer is applied in one pulse during a part of the irrigation time.
- Concentration decreases along the time.
- When the fertilizer is fully dissolved 4 times of fertilizer tank volume should be passed to fully deliver all nutrients.

Quantitative Nutrigation

Advantages

- Low cost; simple maintenance.
- No need to pre-dissolve dry fertilizers.
- Allows high discharge rates.

Disadvantages

- The distribution of the applied fertilizer might not be fully homogenous.

Used in light and sandy soils.

The fertilizer/nutrients concentration in the irrigation water is kept constant.

Equipment:

- Venturi

- Fertilizer pumps (water or electricity propelled)

Venturi (bypass)

Advantages

- Relatively inexpensive and simple to maintain.
- Size of orifice controls fertilizer concentration.

Disadvantages

- High loss of pressure if installed directly on main pipeline
- Relatively low discharge rate

Powered fertilizer pump

Power may be either electrical or hydraulic

Advantages

- Very flexible discharge rates
- Negligible loss of pressure
- Fine control over fertilizer concentration
- Allows automated control

Disadvantages

- Expensive
- Complicated to maintain, requires skilled operator

Amiad fertilizer pump

Amiad fertilizer pump

Preparation of nutrient solutions

Solubility

- Solid fertilizers vary in their solubility and dissolution rates
- Maximal concentration of a tank mix is determined by the solubility of the least soluble fertilizer
- Fertilizer solubility increases with temperature
- Some fertilizers has endothermic dissolution reaction which lowers the temperature of the water
- Acid fertilizers corrode metallic and asbestos-cement components of the irrigation system.

Preparation of nutrient solutions

Fertilizer compatibility

Mixing of incompatible fertilizers in same tank may cause the formation of insoluble precipitates.

Fertilizers containing phosphates or sulfates should be dissolved separately from calcium and magnesium fertilizers.

Preparation of nutrient solutions

Fertilizer compatibility, the Two Tanks Method

Pioneering the Future Haifa

Soil conditions: base dressing and Nutrigation

Soil type and nutrient levels in the soil determine the partition between base dressing and Nutrigation.

NPK levels in the soil	PK levels in soil Sandy soil		Heavy soil		
Deficiency	Only Nutrigation	Corrective base-dressing + Nutrigation	base-dressing + Nutrigation		
Normal level	Only	Only	base-dressing		
	Nutrigation	Nutrigation	+ Nutrigation		
High or	Only	Only	Only Nutrigation		
excessive level	Nutrigation	Nutrigation			

Soil conditions: soil analysis

Actual application rates should take into account nutrient levels in the soil:

No information is available	Application rates = requirements x empiric correction factors
Partial information from rapid soil analysis	Nutrients in the soil are considered if soil concentration exceeds threshold
Full information from lab analysis	Nutrigation program is determined according to actual soil conditions

Example of Nutrigation Program

Processing Tomatoes

Expected yield 100 mt/ha

Soil type – Loam

Nutrient requirements (kg/ha):

N	P2O5 K2O				
Removal by yield					
150	40 280				
Uptake by whole plants					
303	78	522			

When soil analysis is not available, the uptake nutrients quantity multiply by the corresponding correction factor should be applied.

Recommended application rates (kg./Ha)

N	P2O5	K ₂ O
363	150	678

For soils with light texture, additional K_2O may be needed. Pioneering the Future Haifa

Correction factors in use, due to partial availability of the applied fertilizers/nutrients

Nutrient	Soil application (base- or- side- dressing)	Nutrigation
N	1.2 - 1.3	1.1 - 1.2
P ₂ O ₅	1.9 - 2.2	1.6 - 1.9
K ₂ O	1.4 - 1.6	1.2 - 1.4

Base-dressing and Nutrigation rates

	N	P ₂ O ₅	K ₂ O
		Kg/Ha	
Total application rate	363	150	678
Page dragging	30%	50%	30%
base-dressing	109	75	203
Nutrigation	70%	50%	70%
	254	75	475

Base-dressing

		Ν	P2O5	K ₂ O
Required (kg/ha):	109	75	203
0	Fertilizer	A.S.	TSP	SOP
Source	Formula	21-0-0	0-46-0	0-0-50
Applicatio	n rate kg/ha	519	163	406

Nutrigation

Growth	N:P ₂ O ₅ :K ₂ O	kg/ha/day		dava	Total kg/ha			
stage	ratio	N	P ₂ O ₅	K ₂ O	uays	N	P ₂ O ₅	K ₂ O
Planting → flowering	1:1:1	1.5	1.5	1.5	20	30	30	30
Flowering → Fruit-set	2:0.4:3	4.0	0.8	6.0	30	120	20	180
Fruit-set → ripening	1:0:2	3.0	0.5	6.0	35	105	20	210
Ripening → harvest	2:0:3	1.3	-	1.7	20	26	-	34
		Total			280	70	454	

Nutrigation

Growth	Fertilizers	N:P ₂ O ₅ :K ₂ O	kg/ha/day	kg/ha/day		
stage				N	P ₂ O ₅	K20
	Multi-K	13:0:46	3.2	0.28	-	1.5
Planting \rightarrow	Multi-MAP	0:61:12	2.45	0.18	1.5	-
nowening	A.N	34:0:0	2.35	0.54	-	-
	Total	1:1:1		1.5	1.5	1.5
AT.	Multi-K	13:0:46	13.0	1.7	-	6.0
Flowering → Fruit Set	Multi-MAP	0:61:12	1.3	0.15	0.8	-
	A.N	34:0:0	6.3	2.15	-	-
The Land	Total	3:0.4:2		4.0	0.8	6.0

0.8 6.0 Fioneering the Future

Nutrigation

Growth	Fertilizers	N:P ₂ O ₅ :K ₂ O	kg/ha/day	kg/ha/day		
stage				Ν	P ₂ O ₅	K ₂ O
	Multi-K	13:0:46	13.0	1.7	-	6.0
Fruit set→	A.N.	34:0:0	3.8	1.3	-	-
npening	Urea	46:0:0	2.8	1.3	-	-
	Total	1:0:2	P A	3.0		6.0
	Multi-K	1 <u>3</u> :0:46	3.7	0.5	-	1.7
Ripening → harvest	Multi-MAP	<mark>3</mark> 4:0:0	2.4	0.8	-	-
	A.N	46:0:0	1.8	0.8	-	-
	Total	2:0:3		1.3		1.7

- Trial in Italy
- Compared between Nutrigation and side-dressing
- K source: Multi-K

Trial details:

Location:

Azienda Agricola di Cesa (Ar) Arsia Regione, Toscana, Italy. Year 2000.

Supervision: technical manager of Arsia – Mr. Marco Quattrucci Cultivar: Perfectpeel F1 (Peto) Plant density: 30,000 plants / ha Irrigation: drip, 2,000 m³/ha Transplant date: May, 26th, 2000 Harvest date: September 4th, 2000

Control treatment: side-dressing with granular fertilizers Application rates (kg/ha):

N	P_2O_5	K ₂ O
120	140	260

Applications

ことは、れていたいないので	Ν	P ₂ O ₅	K ₂ O
10 days before transplanting	65%	100%	65%
26 days after transplanting (initial flowering):	10%	-	10%
51 days after transplanting (initial fruit-set):	25%	-	25%

Nutrigation treatment

Application rates (kg/ha):

N	P_2O_5	K ₂ O
120	140	260

Applications

- 10 days prior to transplanting: 30% of N, P & K rates as 350 kg/ha of Poni-Ter (granular 12-20-27)
- During the entire plant development stages June 2nd August 16th
 12 weekly Nutrigation applications 70% of N-P-K as crystalline
 Multi-K + Soluble NPK's + Multi-P (phos. acid)

Effect of application method on tomato yield

Effect of application method on tomato yield & quality

Effect of application method on fruit size

Economic analysis

	Granular fertilizers	Nutrigation
Grade I berries	128 MT/ha	148 MT/ha
Revenue on grade I berries	12.2K US\$/ha	14K US\$/ha
Cost of treatment	351 US\$/ha	582 US\$/ha
Net benefit	11.9K US\$/ha	13.4K US\$/ha +12.6%

Haifa Products for Nutrigation

Haifa Products for Nutrigation

- 100% water soluble
- Contain plant-nutrients only
- Efficiently absorbed by the plant
- Free of chloride, sodium, and any other detrimental materials

Haifa portfolio of water-soluble fertilizers covers the entire range of plant nutrients. Nutrients are available in the form of straight fertilizers or ready-made blends.

Haifa Products for Nutrigation

Straight fertilizers

Multi-K Products Haifa MAP Haifa MKP Haifa Cal Magnisal Haifa Micro

Ready-made blends Poly-Feed

Multi-K potassium nitrate

Crystalline products for Nutrigation:

Multi-K Multi-K GG Multi-K pHast Multi-K Top Multi-npK Multi-K Mg Multi-K Zn Multi-K S Multi-K B Multi-K ME

Multi-K potassium nitrate

N total	13.2%
N-NO ₃	13.2%
K ₂ O	46.0%
K	38.1%
Insoluble matter	300 ppm
Bulk density	1.0 g/cm ³

Packaging 25, 50, 500 and 1000kg bags

Haifa MAP Mono-ammonium phosphate

N total	12%
N-NH ₄	12%
P ₂ O ₅	61%
Р	27%
pH (5% soln.)	4.2
Bulk density	1.1 g/cm ³

Packaging 25, 500 and 1000kg bags

Haifa MKP Mono-potassium phosphate

P ₂ O ₅	52%
Р	22.7%
K ₂ O	34%
К	28.7%
pH (5% soln.)	4.4
Bulk density	1.2 g/cm ³

Packaging 25, 500 and 1000kg bags

Magnisal - Magnesium nitrate

N total	11.0%
N-NO ₃	11.0%
MgO	16.0%
Mg	9.7%
pH (5% soln.)	4.1
Insoluble matter	300 ppm
Bulk density	0.7 g/cm ³

Packaging 25 kg bags

Haifa Cal - Calcium Nitrate Greenhouse Grade

N total	15.5%
N-NO ₃	14.4%
N-NH ₄	1.1%
CaO	26.5%
Са	19.0%
Insoluble matter	300 ppm

Packaging 25 kg bags

Haifa Micro Chelated Micronutrients

A TAKE A TAK	Nutrient		
Multi Mioro Eo		Fe-EDTA 13%	
	IION	Fe-EDDHA 6%	
Multi-Micro Mn	Manganese	Mn-EDTA 13%	
Multi-Micro Zn	Zinc	Zn-EDTA 14%	
Multi-Micro Cu	Copper	Cu-EDTA 14%	
		7.1%Fe, 3.48% Mn,	
Multi-Micro Comb	Mix	1.02% Zn, 0.76% Cu, 0.485% Mo	

Packaging 1kg cardboard boxes, 25kg bags

Poly-Feed GG Greenhouse-grade NPK fertilizers

Formulae for Nutrigation of soil-grown crops and for foliar feeding:

Growth stage	Formula	%N-NH ₂	%N-NO ₃	%N-NH ₄	
Establishment	15-30-15+ME	5.3 4.0		5.7	
Vegetative	19-19-19+ME	10.0	5.5	3.5	
productive	20-9-2 <mark>0+</mark> ME	- 12.0		8.0	
	17-10-27+ME	-	11.5	5.5	
	16-8-32+ME	-	11.7	4.3	

Poly-Feed GG Greenhouse-grade NPK fertilizers

Formulae for soilless culture and hydroponics

Growth stage	Formula	K ₂ O/N ratio	N-NO ₃ %	N-NH ₄ %	SO ₃ %
Establishment	18-18-18+ME	1.0	10	8	-
Vegetative	20-9-20+ME	1.0	12	8	
productive	17-10-27+ME	1.6	11.5	5.5	-
	16-8-32+ME	2.0	12	4	-
	14-10-34+ME	2.4	11	3	-
	11-12-33+2MgO+ME	3.0	9	2	3.9
	11-8-34+2MgO+ME	3.1	10	1	3.9
	9-12-36+3MgO+ME	4.0	8.3	0.7	5.8
	9-10-38+3MgO+ME	4.4	9	-	3.9

Poly-Feed Drip

NPK fertilizers for Nutrigation in open-field

Growth stage	N:P ₂ O ₅ :K ₂ O ratio	Formula		
Establishment	1-4-1	11-44-11+ME		
	1-3-1	36-13-36+2MgO+ME		
	1-2-1	15-30-15+ME		
Vegetative	1-1-1	20-20-20+ME		
1 marsh and the	1-1-1	19-19-19+1MgO+ME		
	2-1-1	26-12-12+2MgO		
	2-1-2	21-11-21+2MgO+ME		
productive	2-1-3	14-7-21+2MgO+ME		
	2-1-4	14-7-28+2MgO+ME		
	3-1-3	23-7-23+2MgO+ME		
	High K	12-5-40+2MgO+ME		

Poly-Feed Foliar

Stage-specific formulae

	Micronutrients (ppm)					
	Fe	Mn	Zn	Cu	Mo	В
Vegetative Booster 21-21-21	1300	660	200	140	90	200
Flowering Booster 8-52-17	500	250	75	55	35	100
Fruiting Booster 16-8-34	1200	600	180	130	80	200

Poly-Feed Foliar

Stage-specific formulae

	Micronutrients (ppm)					5 10
	Fe	Mn	Zn	Cu	Mo	В
Poly-Wheat 23-7-23	1700	850	250	1000	110	200
Poly-Potato 12-5-40	2000	1000	300	220	140	300
Poly-Citrus 16-7-30+2MgO	1000	500	2000	110	70	300
Poly-Olive 15-7-30+2MgO	1000	500	150	110	40	4500
Poly-Rice 15-15-30	1000	1500	150	110	70	200
Poly-Vineyard 4-15-37+3MgO	2300	500	150	110	70	200
Poly-Cotton 12-5-40	2000	1000	300	220	140	300
Poly-Sugarbeet 15-7-30+2MgO	1000	500	150	110	70	4500

Thanks for yours Attention

